Instance Segmentation task
Sample inference script for torchscript exported instance segmentation model
Mask RCNN code example
import torch
import numpy as np
from PIL import Image
import torchvision
import json
import matplotlib.pyplot as plt
import cv2
with open('class_mapping.json') as data:
mappings = json.load(data)
class_mapping = {item['model_idx']: item['class_name'] for item in mappings}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.jit.load('model.pt').to(device)
image_path = '/path/to/your/image'
image = Image.open(image_path)
# Transform your image if the config.yaml shows
# you used any image transforms for validation data
image = np.array(image)
h, w = image.shape[:2]
# Convert to torch tensor
x = torch.from_numpy(image).to(device)
with torch.no_grad():
# Convert to channels first, convert to float datatype
x = x.permute(2, 0, 1).float()
y = model(x)
# Some optional postprocessing, you can change the 0.5 iou
# overlap as needed
to_keep = torchvision.ops.nms(y['pred_boxes'], y['scores'], 0.5)
y['pred_boxes'] = y['pred_boxes'][to_keep]
y['pred_classes'] = y['pred_classes'][to_keep]
y['pred_masks'] = y['pred_masks'][to_keep]
# Draw you box predictions:
all_masks = np.zeros((h, w), dtype=np.int8)
instance_idx = 1
for mask, bbox, label in zip(reversed(y['pred_masks']),
y['pred_boxes'],
y['pred_classes']):
bbox = list(map(int, bbox))
x1, y1, x2, y2 = bbox
class_idx = label.item()
class_name = class_mapping[class_idx]
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 4)
cv2.putText(
image,
class_name,
(x1, y1),
cv2.FONT_HERSHEY_SIMPLEX,
4,
(255, 0, 0)
)
all_masks[mask == 1] = instance_idx
instance_idx += 1
# Display predicted masks, boxes and classes on your image
plt.imshow(image)
plt.imshow(all_masks, alpha=0.5)
plt.show()
FBNet v3 code example

Last updated

